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Abstract

The compression (η) of liquid deuterium between 45 and 220 GPa under laser-driven shock load-

ing has been measured using impedance matching to an aluminum (Al) standard. An Al impedance

match model derived from a best fit to absolute Hugoniot data has been used to quantify and min-

imize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In

deuterium below 100 GPa results show that η ' 4.2, in agreement with previous impedance match

data from magnetically-driven flyer and convergent-explosive shock wave experiments; between

100 and 220 GPa η reaches a maximum of ∼5.0, less than the 6-fold compression observed on

the earliest laser-shock experiments but greater than expected from simple extrapolations of lower

pressure data. Previous laser-driven double-shock results are found to be in good agreement with

these single-shock measurements over the entire range under study. Both sets of laser-shock data

indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

PACS numbers: 62.50.-p, 64.30.-t
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I. INTRODUCTION

The behavior of hydrogen near its metal-insulator transition has long been a source of

fundamental scientific interest.1 Experiments on solid hydrogen show that even at 316 GPa

and 13-fold compression the vibron signature of the H2 molecule persists and hydrogen

remains an insulator;2 evidently such an extreme increase in density alone is insufficient

to dissociate this most basic chemical bond. In the fluid however, metallization occurs at

considerably lower densities: At several thousand degrees dense hydrogen transforms into a

conducting fluid3,4 indicating significant dissociation even at only 4-fold compression.4 The

behavior of hydrogen near this fluid insulator-to-metal transition has profound implications

for the interiors of giant planets5 and is central to resolving basic questions about planetary

formation.6

Experimental studies of this complex fluid are accomplished using dynamic compression

measurements near 100 GPa. In particular, the compression (η) along the principal Hugoniot

of liquid deuterium7 (D2) has become the single most important experimental metric by

which theories of hydrogen at high temperature and pressure are judged. Chemical free

energy models8–12 and ab initio simulations13–22 have been used to predict this Hugoniot but

results vary widely and span the range between η = 4 and η = 6 at pressures near 100 GPa.

The accuracy of these different calculational approaches is seen as a fundamental test of

whether traditional chemical models, which are limited by the a priori properties assigned

to atoms and molecules, can compete with first principles calculations, which are limited by

their numerical approximations.

In an unprecedented comparison, experiments from three different shock wave platforms

have been used to measure the deuterium Hugoniot; however, the results have remained in-

conclusive. Laser-driven measurements23–25 showed ∼6-fold maximum compression between

50 and 320 GPa; magnetically-driven flyer experiments26,27 observed <4.4-fold compression

up to 100 GPa; and convergent explosive-driven measurements28–31 found just over 4-fold

compression near 100 GPa. The laser-driven experiment, which was the only one to use an

absolute radiography measurement technique, is thus in disagreement with the other two

experiments. Since both magnetic-flyer and convergent-explosive experiments instead used

impedance matching methods to determine the deuterium Hugoniot it is imperative to es-

tablish whether the difference in measured compression is caused by the drive platforms and
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their associated timescales or is an artefact of the measurement technique.

To address this question, impedance matching measurements of the deuterium Hugo-

niot were made using laser-driven shock waves. Aluminum was chosen as the material

standard, as it was for the magnetic- and explosive-driven experiments, because its high-

pressure equation-of-state (EOS) is comparatively well constrained by experimental data.

An experimentally-based Al Hugoniot is derived and uncertainties in the Hugoniot and re-

lease curves are propagated as systematic errors. Such rigorous error analysis is particularly

important because of the large impedance mismatch between Al and D2 which not only

magnifies the effect of small Al EOS uncertainties but also necessitates knowing the Al

EOS to extremely high pressures where such uncertainties become increasingly significant

(∼700 GPa shocks in aluminum are required to generate 100 GPa shocks in deuterium).

This experimentally-based Al impedance matching model is found to be critical for accurate

analysis of data at D2 pressures of ∼100 GPa and above.

Our results show that between 45 and 101 GPa η ' 4.2, in good agreement with previous

magnetic- and explosive-driven impedance matching measurements. This indicates that the

discrepancy between earlier experiments in this range was due to the differences between

radiography and impedance matching measurement techniques, not any inherent differences

between shock platforms. At around 110 GPa, the compression increases sharply to a

maximum of η ' 5.0, remaining between 4.5 and 5-fold compression up to 220 GPa. This

is in excellent agreement with previous laser-driven double-shock measurements.32 Whether

or not this abrupt increase in compression near 110 GPa is evidence of a phase transition,

or perhaps a nearby critical point, is discussed.

This paper is organized as follows: In Section II previous theoretical and experimental

work is reviewed; in Section III details of the experimental set-up and diagnostics are de-

scribed; Section IV discusses the aluminum impedance matching model and propagation

of systematic uncertainties, as well as how to account for different initial densities when

comparing results from different experiments; in Section V the results for the experimental

observables are presented along with the inferred principal Hugoniot; in Section VI previous

double-shock and reverberation time data are compared to the single-shock results, with

conclusions and discussion presented in Section VII.

3



II. BACKGROUND

A. Theoretical models

There is a diverse array of calculations for the deuterium Hugoniot in the neighborhood

of 100 GPa, providing a clear comparison among a wide variety of theoretical approaches

(see Fig. 1). These various models can be divided roughly into 2 categories: (1) Analytic-

based or chemical models, which legislate the properties of atoms, molecules, electrons, and

ions based on our common notions of each; and (2) Ab initio models, which assume the

properties of electrons and nuclei only and do not explicitly define higher-level complexes

(e.g atoms or molecules) as distinguishable entities. Ab initio models, being based on large

numerical first principles simulations, have the potential for revealing fundamentally new

entities but ultimately cover a limited phase space and often provide less physical intuition

than do the simpler chemical models. Hydrogen has thus become a testing ground for these

competing conceptual frameworks.

Over the years, several chemical models, typically applying perturbation theories for

the dense molecular-atomic fluid, have been shown to predict anywhere between 4 and

6-fold compression in deuterium at 100 GPa. The earliest widely used chemical model

was that by Kerley,8 referred to here as the Sesame72 model. This multi-phase, multi-

component EOS included dissociation and ionization and combined molecular and atomic

fluid phases using the linear-mixing approximation. With no experimental guidance this

model predicted η=4 at 100 GPa, increasing slightly at higher pressures. Much later, a

model by Ross10 applied a linear mixing rule to interpolate between the low pressure soft

sphere molecular fluid EOS and the high pressure one component plasma. Adjusting a

free energy correction to match lower pressure reflected shock temperature measurements33

caused significant softening, giving ηmax=6.0 at 90 GPa. Today these two models, which

preceded any measurements in the 100 GPa regime, are generally regarded to be extrema

bounding the region of validity, with the Sesame72 model considered ‘stiff’ and the Ross

model considered ‘soft’. Most models predict compressions that lie in between. Other

analytic-based models include Kerley’s improved models, the most recent of which is referred

to here as Kerley03,34 the wide-ranging EOS by Saumon,9 another fluid variational model,12

and the high-temperature, dense plasma activity expansion model (ACTEX).11
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Ab initio methods also exhibit a wide range of predictions for the deuterium Hugoniot.

Although termed ‘ab initio’ or ‘first principles’ methods, these techniques all implement dif-

ferent approximations to make the problem numerically tractable. The proliferation of these

methods and their different predictions for the deuterium Hugoniot provides a useful win-

dow into the validity of these various approximations. Tight-binding13 and density functional

theory molecular dynamics (DFT)14–18 methods have been used to calculate the Hugoniot

below ∼100 GPa. Tight-binding calculations show ηmax=4 near 50 GPa; DFT methods show

ηmax=4.3-4.5 around 50 GPa. Initial disagreement between DFT calculations14–16 and low

pressure gas gun results35 was later rectified.17,18 Path Integral Monte Carlo (PIMC) meth-

ods, in contrast, have been used to calculate the Hugoniot above ∼100 GPa. Restricted

PIMC found either ηmax=6 using the nodes of the free particle density matrix19 or ηmax=4.3

using those from the variational density matrices.20 The Direct PIMC21,22 approach, which

avoids such path integral restrictions, found η=5 near 100 GPa. Another approach, using

an electron force field method, also predicted η=5 between 100 and 200 GPa.36

These different results demonstrate the challenges of modelling hydrogen near the fluid

metal-insulator transition. Hydrogen at 100 GPa lies at the high temperature limit of

available DFT calculations, the low temperature limit of PIMC calculations, and in between

the asymptotic ideal limits of chemical models. Experiments in this regime are thus crucial

to establishing the ultimate limitations of these different theoretical paradigms.

B. Previous experiments

Until 1997, the highest pressures achieved in liquid deuterium had been attained on gas

gun experiments.35,37,38 These experiments used impedance matching to an aluminum stan-

dard and reached a maximum single-shock pressure of 25 GPa. Experiments around 100

GPa were pioneered by workers using laser-driven shock waves23–25 and followed soon there-

after by experiments using magnetically-driven flyers26,27 and convergent explosives.28–31

These experiments used either one of two fundamentally different measurement techniques:

The laser shock studies used x-ray radiography while the other two experiments both used

impedance matching to aluminum.

The laser-driven shock measurements, performed on the Nova facility,23–25 employed time-

resolved x-ray radiography to directly measure both shock and particle speeds, thus obtain-
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ing a model-independent measurement of the deuterium compressibility. Such an approach

was taken because of the unavailability of accurate high pressure impedance matching stan-

dards at the time. Measurements observed η ∼ 5.5 − 6.0 from 50-320 GPa. Thus far such

high compressions have not been reproduced elsewhere, although the radiography method

has yet to be repeated on deuterium.

The second set of experiments used flyer plates magnetically driven by the Z machine

to generate shocks up to 101 GPa. By applying the impedance matching technique with

aluminum as the standard, Knudson et al.26,27 found η ' 4.3 at 40 GPa, stiffening to η ' 4 at

101 GPa. Importantly, Knudson et al. performed near-absolute and absolute measurements

of the Aluminum Hugoniot and release39,40 to establish their standard in the relevant pressure

range.

Finally, explosively driven experiments in convergent geometry were performed on ini-

tially solid,28,29 gaseous,30 and liquid31 deuterium also using aluminum impedance matching.

Applying the necessary corrections to account for initial density differences,41 these data in-

dicate that η ' 4.0− 4.5 below 110 GPa.

Multiple shock experiments have also been studied extensively and provide additional

constraints on the deuterium EOS. Although early laser-driven double-shock measurements

on the Nike laser42,43 using an aluminum anvil appeared to be consistent with a soft EOS,

subsequent higher precision double-shock data obtained on the Omega laser32 using a quartz

anvil indicated a stiff EOS for first shock pressures below ∼100 GPa and above ∼200 GPa,

and an ‘intermediate’ EOS suggestive of η ∼ 5 in between. The Omega experiments provide

a rigorous test of the deuterium compressibility (albeit in the double-shock state) because

the data are independent of models for the standard. Magnetic flyer-driven double-shock

compression27 and multiple shock reverberation27,44 experiments indicated a stiff EOS up to

100 GPa, in agreement with the Omega laser-driven double-shock measurements.32 Double-

shock measurements on different platforms are thus in agreement, at least over the pressure

range where they can be compared directly.

Although much has been made of the disagreement between single-shock experiments

from different platforms it is worth noting that these experiments can only be compared

over a relatively limited pressure range. The magnetic-flyer and convergent-explosive data

reach just over 100 GPa while the Nova data extends to 340 GPa. Thus the only pressure

range over which all data can be compared directly is around 100 GPa and below.
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III. EXPERIMENTAL METHOD

The experiment described in this paper was performed on the Omega laser at the Uni-

versity of Rochester, a neodymium-doped phosphate glass system operating with frequency-

tripled, 0.35 µm light.45 To generate the shock pressures explored in these experiments, laser

energies up to 3 kJ were delivered using a nominally square pulse 3.7 ns in duration. The

laser focal region was smoothed using distributed phase plates, producing a near uniformly-

irradiated spot 800 µm in diameter. Targets consisted of a flat diamond-turned aluminum

pusher (50 µm or 90 µm thick) attached to a copper cell filled with cryogenic deuterium

(see Fig. 2). A 20 µm CH ablator was used to reduce hard x-ray generation. Pre-heat

affects in these types of targets and with these laser conditions were previously found to be

negligible.32 A z-cut, α-quartz ‘witness plate’ was glued over half of the Al pusher as a refer-

ence window for determining the shock velocity immediately prior to break-out from the Al

(see below). By observing the solid-liquid transition in deuterium and using the properties

of deuterium on the saturation line,46 we determined that the deuterium density was 0.174

g/cm3. At this density and at the probe laser wavelength of 532 nm, the index of refraction

was calculated to be 1.138.46 At room temperature, the density of quartz was measured to

be 2.65 g/cm3 and the refractive index along its c-axis at 532 nm was found to be 1.547.

Small changes in the properties of aluminum upon cooling to cryogenic temperatures were

taken into account; changes in quartz properties were found to be insignificant.47

Shock velocities were determined using a line-imaging Velocity Interferometer System for

Any Reflector (VISAR)48–51 which measures the Doppler shift of a moving reflector. At

the high pressures involved in these experiments, shock waves in the initially transparent

quartz52 and deuterium4 are reflecting. Thus the VISAR directly measures the shock front

velocity in both materials. Two VISAR’s with different velocity sensitivities were used to

resolve 2π phase shift ambiguities which occur at shock break-out. The velocity sensitiv-

ities for the two VISAR instruments were 6.069 and 14.138 µm/ns/fringe for deuterium

and 4.465 and 10.400 µm/ns/fringe for quartz. Post-processing of the VISAR images using

Fourier Transform methods determines the fringe position to <∼ 5 % of a fringe; the result-

ing velocities are measured to around 1% precision since shock speeds are high enough to

cause multiple fringe shifts. The probe source was an injection-seeded, Q-switched, yttrium-

aluminum garnet laser, operating at a wavelength of 532 nm with a pulse length of ∼ 25
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ns. Streak cameras with temporal windows of between 3 and 10 ns were used to detect the

reflected probe signal. The time resolution of the VISAR and streak camera system was

∼40 ps.

Shock velocities in aluminum (UsAl) and deuterium (UsD) represent the primary experi-

mental observables for the impedance matching calculations. These velocities must be taken

immediately before and after the shock wave crosses the Al-D2 interface for the impedance

matching condition to apply; otherwise, corrections must be made for shock unsteadiness

effects as was done in the experiments using the unsteady convergent geometry.28–31 To ad-

dress this issue, we developed a new approach53 to measure both UsAl and UsD at shock

break-out using the continuous, time-resolved read-out provided by the VISAR combined

with a quartz witness plate mounted on the Al pusher (see Fig. 2a). The VISAR simulta-

neously measures both the quartz (UsQ) and deuterium (UsD) shock velocities at break-out

from the aluminum (see Fig. 2b & c); subsequent unsteadiness in the shock velocities does

not affect the results since it is only the velocity at break-out that is required (shock ac-

celerations at break-out varied between -0.2 and -4.2 km/s/ns). Then, using the previously

established relationship (see Fig. 2d and discussion below), UsAl is determined directly from

the measured UsQ. This provides an entirely VISAR-based impedance matching measure-

ment and avoids the larger errors typically incurred by a transit time measurement. In these

single-shock measurements there is no need to use EOS models or hydrodynamic codes to

correct the observables, as was done to account for the density profile of the Al flyer in the

magnetic-flyer experiments,26,27 or the shock steadiness and curvature effects, as was done

in the convergent geometry experiments.28–31

The linear relationship between UsAl and UsQ was established in a previous set of

experiments53 for the range 200 < PQ < 1500 GPa, as shown in Fig. 2d. The Al-quartz

data were best fit with UsAl = a0 + a1(UsQ − β), where β = 20.57, a0 = 21.14 km/s, a1

= 0.91. The uncertainty in this fit is given by δUsAl = [σ2
a0 + (UsQ − β)2σ2

a1 + a2
1δU

2
sQ]1/2,

where σa0 = 0.12, σa1 = 0.03, and δUsQ is typically ∼1%. The resulting δUsAl is also ∼1%

because the uncertainty of the linear fit (over 23 data points) is significantly less than the

uncertainty of a single data point. It is important to emphasize that the quartz thus serves

only as a calibrated gauge; no details about its high-pressure properties (such as its release

behavior) are required beyond this correlation between single-shock velocities in aluminum

and quartz.
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IV. DATA REDUCTION

A. Impedance match analysis

Impedance matching54,55 (IM) is the calculational procedure used to extract the deu-

terium particle velocity (UpD), pressure (PD), and compression (ηD) from the experimental

observables: UsAl and UsD. This requires knowing both the principal Hugoniot and the

release curves of the standard material (Al). We have constructed an IM method using a

best fit to high-pressure Al data which allows errors in both the Hugoniot and the release

curves to be calculated independently and propagated through the analysis. Although a full

explanation of this method was given in an earlier paper,56 many of the essential details will

be repeated in this section, focusing on the implications for D2. The approach is similar

in essence to one developed by Nellis and Mitchell57 in that absolute (model-independent)

Hugoniot data were used to derive the Al Hugoniot while release curves were constructed in

a way that depended minimally on theoretical models.

The first step in developing our IM model was to establish the principal Hugoniot for

Aluminum. To do this we represented the Hugoniot by a best fit to available absolute Al

Hugoniot data up to 3000 GPa. These reference data included the accurate experiments of

Al’tshuler et al.,58 Mitchell and Nellis,59 Knudson et al.,39 Simonenko et al.60 and Podurets

et al.61 as well as additional unpublished data from Knudson.62 Our Us-Up fit employed a

weighted χ2 minimization of a piecewise linear form selected from among a number of choices

using standard statistical F-test methods. It is given by UsAl = (9.449 ± 0.020) + (1.324 ±
0.016)(UpAl−3.0220) for UpAl ≤ 6.763, UsAl = (17.992±0.078)+(1.167±0.026)(UpAl−9.8381)

for 6.762 < UpAl ≤ 30, where all values are given in km/s. In the high pressure range very

similar fits have been reported by Trunin.63 Small changes to this fit due to operation at

cryogenic temperatures were taken into account.47

As was shown previously (see Fig. 4 of Ref.56), the various commonly available Al EOS

models typically pass through the error bars of individual measurements but in general were

slightly stiffer than the best fit given above. Particularly stiff was the EOS table used in the

analysis of the magnetic-flyer experiments (the 3700 table from Kerley64) whose validity was

verified by Hugoniot39 and release40 measurements only up to 500 GPa. This table predicted

a Hugoniot that fell outside the 1σ uncertainty band of the best fit experimental Hugoniot

9



above PAl = 450 and out of the 2σ band above 630 GPa. Use of this EOS for the higher

pressure data we have in this experiment - Al pressures reach a maximum of ∼1400 GPa in

our experiments - would result in significant error.

The second step in developing the Aluminum IM model was to establish the release behav-

ior. In order to minimize the influence of theoretical input only the difference of the release

curves from the reflected principal Hugoniot (in the P -Up plane) was calculated. Previously,

Gruneisen parameters were used to determine this.57 Our approach was to calculate the

difference by averaging predictions from several available Al EOS models (Sesame65 tables

3713, 3715, 3719, Kerley’s 3700 table64 and qEOS66), the resulting standard deviation being

defined as the systematic uncertainty in the release.56 This level of model-dependent input

was unavoidable and ranged from 2-4% of the final pressure, with an uncertainty in the

fit of ±1.4-1.6%. These release curve calculations are in good agreement with the release

measurements of Holmes67 and Knudson et al.40 (see Fig. 7 of Ref.56). Importantly, the un-

certainties in those measurements are comparable to our calculated systematic errors; this

provides confidence in our systematic error analysis.

The resulting systematic uncertainties in the release velocity, UpD, are shown in Fig. 3

as a function of final D2 shock pressure for a set of synthetic shock data calculated from

theoretical models. The dashed curves show the contribution from the Hugoniot uncertainty,

the dotted curves show the contribution from the release profile uncertainty, and the total

systematic uncertainty (quadrature sum) is shown as the solid curves; all curves are labelled

as ”K” or ”R” corresponding respectively to the Sesame72 (by Kerley) or Ross EOS models.

The Hugoniot uncertainty contribution has a local maximum near 40 GPa originating from

increased fitting uncertainties near the connection between the piecewise segments of the

low and high pressure fits of the Hugoniot (270 GPa along the Al Hugoniot). There is also

a maximum in the release profile uncertainty near 50 GPa which arises because of large

variations among the various Al models near the Al melt transition. For D2 pressures >∼ 100

GPa the systematic uncertainty is <∼ 1.5%, and shows no unusual behavior because the Al

states are on the high pressure branch of the Hugoniot and well above the melt transition.

Fig. 4 shows an example impedance match calculation for deuterium at 80 GPa which

includes the random uncertainties (from UsAl and UsD) and the systematic uncertainties from

both the Hugoniot and release portions of the IM calculations. Systematic and random errors

in UpD, PD and ρD are given separately in Table I.
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Over a broad range of final D2 pressures (from 50 to 250 GPa) systematic uncertainties

from the Al EOS are thus ∼ 1.5% of Up and are essentially independent of whether the D2

response is soft or stiff. Since these systematic errors can be comparable to the random

uncertainties in our measurements it is important that both are included in our analysis.

B. Initial density effects

The deuterium Hugoniot experiments carried out at the various facilities have been per-

formed with different initial densities. These differences are much more significant when

comparing experiments on initially solid (ρ0 = 0.199 g/cm3)28,29 or gaseous (ρ0= 0.153 and

0.134 g/cm3)30 deuterium versus those on initially liquid deuterium: Nova (ρ0 = 0.171

g/cm3), Z (ρ0 = 0.167 g/cm3), and Omega (ρ0 = 0.174 g/cm3). Even though comparing

the deuterium compression - rather than the absolute shock density - partially compensates

for these different initial densities, residual differences can still be significant. Uncorrected

comparison of these data results in small offsets between groups of data with different initial

densities, both in the P -η and Us-Up planes.

To quantify such effects we investigate how the Hugoniot shifts with ρ0 in two extreme

D2 EOS models, the stiff Sesame72 and soft Ross models, for initial densities in the range

0.11 < ρ0 < 0.23 g/cm3, and show how the same correction can be applied, irrespective

of EOS model. Figs. 5(a) and 5(d) compare the Hugoniots in the P -η plane and clearly

illustrate how higher initial densities result in lower final compressions. This trend is seen

in a wide variety of materials and is due primarily to the increasing interactions at higher

densities. In the Us-Up plane, as shown in Figs. 5(b) and (e), these shifts result in a family

of parallel lines separated in Us by an amount that depends only on ρ0. The change in Us for

a fixed Up increases linearly with ρ0 by an amount that is almost identical for both stiff and

soft deuterium models. Thus, shifting a Hugoniot from one initial density (ρ0) to another

(ρ00) requires simply adding a corrective term, ∆C0(ρ0, ρ00), to Us. By averaging over both

models we find that ∆C0(ρ0, ρ00) [km/s] = 2.29(1− ρ0/ρ00).

Figs. 5(c) and (f) show how this corrective term successfully collapses Hugoniots from

both stiff and soft models onto that from a single reference density, in this case given by

ρ00 = 0.174 g/cm3 (the value for our experiment). All the curves overlap to within ±0.1

km/s over the range of interest for this study. This illustrates that our correction term,
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∆C0(ρ0, ρ00), while necessarily derived from deuterium EOS models, is largely independent

of whether these models are stiff or soft.

V. RESULTS

A. Shock velocity observables

It is instructive to compare results for the shock observables, UsD and UsAl, since these

are typically the inputs to the impedance matching calculations. Figure 6 shows our new

UsD vs UsAl data (also listed in Table I) along with the data of Knudson et al.,26,27 Boriskov

et al.,29 Grishechkin et al.,30 and Belov et al..28 It should be noted that, in the case of

the Knudson et al. experiments only, UsAl was not an observable: they measured the

flyer velocity ∼ 2UpAl to infer the shock state in the Al. For these data we reconstructed

the UsAl from our best fit Hugoniot and some additional information given in Knudson et

al.68 As discussed previously,27,56 the use of UpAl rather than UsAl as an observable changes

slightly the way systematic errors in the Al EOS are propagated, considerably reducing

the effect of uncertainties in the principal Hugoniot. Errors in the release are unchanged.

In practice, the errors in those experiments below 100 GPa are largely dominated by the

random uncertainties.

The results in Fig. 6 show that the single shock Al-D2 experiments in the impedance

match configuration produce universal agreement in the experimental observables regardless

of driver, at least in the pressure range where multiple data sets exist. Two theoretical

curves are shown for reference: the Sesame728 and the Ross model;10 these curves were

calculated using the Al impedance matching model described above, assuming an initial

deuterium density of 0.174 g/cm3. Note how, above the highest pressure points obtained

in the Z experiments (28 km/s, or 100 GPa), the data reported here appear to shift from

near agreement with the stiffer model partially towards the softer deuterium model. This

softening trend is also indicated by a single convergent explosive data point29 around 28

km/s.
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B. Principal Hugoniot

The principal Hugoniot data for this experiment are shown in Figure 7 and 8 and include

both random and systematic uncertainties. These data are shown along with those from

Knudson et al.27, Belov et al.28, Boriskov et al.29,31 and Grishechkin et al.30

In order to determine whether the use of different Al EOS models by previous workers

could cause systematic shifts between each data set, where possible we re-analyzed previous

data according to the procedure described in Section IVA. The results, along with our

data, are shown in Table I and include both systematic and random error components

where applicable. The Al EOS model originally used by Grishechkin et al.30 appears to

have been significantly softer than the model used here since these data become stiffer when

re-analyzed with our best fit Al model. The Al model used by Belov et al.28 was also softer

whereas that used by Boriskov et al.29 was very slightly stiffer than ours at the relevant

pressures. Other experiments by Boriskov et al.31 did not report Aluminum shock velocities

and thus could not be re-analyzed. As discussed in Section IVA, Knudson et al. used an

Al EOS that was too stiff at the highest pressures; their data becomes slightly softer when

analyzed using our Al model. The stiffness of our best-fit Al model thus appears to be

somewhere in between those used previously.

All data have been normalized to the initial liquid density of ρ00=0.174 g/cm3 used in

this experiment by applying the method described in Section IVB. These adjustments

result in very small corrections to data from other experiments using liquid samples. For

example, the data from Z, taken at ρ0 = 0.167 g/cm3, becomes stiffer by around 1% in

compressibility. However, the data from non-liquid samples, which have considerably larger

differences in initial density, undergo around 5% changes in compressibility: Data from solid

deuterium samples28,29 (ρ0 = 0.199 g/cm3) become softer while data from gas samples30

(ρ0= 0.153 and 0.134 g/cm3) appear stiffer. The values of the required ∆C0 corrections for

each experimental point are listed in Table I along with the final adjusted pressure (PDcorr)

and compression (ηDcorr).

Below 110 GPa, the new data reported here are consistent with all previously reported

IM results which show a stiff response for deuterium. The inferred 4.0 to 4.5-fold deuterium

compression disagrees with 3 or 4 data points from the Nova absolute data in the range

50 < PAl < 100 GPa which show a softer response. Above 110 GPa the centroid of our data
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exhibits a softening up to 5-fold compression, remaining between 4.5 and 5-fold compression

up to above 200 GPa. This is systematically stiffer than the 6-fold compression observed

in the Nova radiography experiments. After correcting for initial density effects, several

convergent explosive points cluster between 100 and 110 GPa, with one point29 suggesting a

softening to η = 4.5. No published magnetic flyer data exists above 104 GPa. It is unfortu-

nate that all previously published explosive-driven and magnetic-flyer driven measurements

fall just short of the pressures where we observe an additional softening of the Hugoniot.

Comparing to ab initio calculations above 110 GPa, these results are softer than those

given by the Restricted PIMC approach of Militzer et al.20 but in agreement with the Direct

PIMC calculation of Filinov et al.22 which shows 5-fold compression above 100 GPa. DFT

calculations by Desjarlais17 do not show any softening at such high pressure, predicting

instead that η < 4.3 above 100 GPa; other DFT calculations have not been reported up to

these pressures.

VI. COMPARISONS WITH PREVIOUS LASER-DRIVEN MULTIPLE-SHOCK

MEASUREMENTS

A. Double-shock pressures

Double-shock measurements are a useful way to assess the deuterium single-shock com-

pression since the second shock pressure is very sensitive to the first shock density. Laser

double-shock experiments at Omega were performed previously32using a highly precise

quartz anvil technique. The laser conditions and diagnostics were identical to those described

above. A diagram of the target arrangement is shown in the inset of Fig. 9, illustrating the

quartz re-shock anvil positioned 35 µm into the deuterium. The experimental observables

were the deuterium single-shock velocity and the quartz shock velocity and are shown in

shown in Fig. 9. When compared to re-shock predictions from various EOS models these

experiments showed that deuterium has a stiff response below first shock pressures of ∼100

GPa, and a softer response above. The similarity of this behavior with the single-shock data

shown in Fig. 8 is evident.

To more quantitatively compare these previous double-shock measurements with the

new laser-driven single-shock data a method to transform the double-shock observables
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(shown in Fig. 9) into the single-shock P -η plane has been developed. This was done

by converting the measured second shock pressure and first shock velocity into a single-

shock density and pressure via the Hugoniot relations using an average of several models to

determine the second shock compressibility of deuterium. Details of this method are given in

Appendix A. This approach is predicated on the idea that the second shock compressibility is

much less uncertain than the first shock compressibility. The variations observed in several

EOS models show that this assumption appears to be reasonable: Although the models

predict severe differences in first-shock compressibilities they all give very similar second-

shock compressibilities (see Fig. 14). Using a model-based estimate of the second-shock

compressibility to interpret the re-shock data thus appears to be a complementary way of

estimating the first-shock compressibility.

The principal Hugoniot derived in this way from the double-shock data of Boehly et

al.32 is given by the filled circles in Fig. 10 and listed in Table II. Error bars represent a

quadrature sum of both the random and systematic uncertainties. Systematic errors in this

inversion technique arise from uncertainties in the second shock compressibility, which we

define to be the variations in the model-based predictions of the adiabatic exponent (see

Fig. 13), combined with uncertainties in the measured quartz Hugoniot.53 The quadrature

sum of these systematic errors is found to be <4% in the first shock density for pressures

higher than 100 GPa. Comparison of the results in Fig. 10 with the impedance-match data

(open circles) shows that the double-shock data of Boehly et al.32 are consistent with the

single shock data presented in Fig. 7 and 8.

The common conclusion from both data sets is that the single shock density compres-

sion of liquid deuterium reaches a peak of η = 5.0, intermediate between the stiffest and

softest models, at pressures between ∼110 and ∼200 GPa. The agreement between single

shock and inverted double shock results is of particular significance because the systemat-

ics of the two analyses are fundamentally different: In the impedance match analysis the

model-dependent uncertainty of the aluminum release and data-dependent uncertainty of

the aluminum Hugoniot determine the total systematic uncertainty; in the inverted double

shock analysis the model-dependent estimate of the deuterium second shock compressibility

and the data-dependent uncertainty of the quartz Hugoniot determine the systematic un-

certainty. However, for both cases our estimates find that the total systematic uncertainties

in compression are similar - about δηsys/η < 4% - which is smaller than the measurement
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uncertainties in all cases. The comparison in Fig. 10 shows that the Hugoniots estimated

from single shock impedance match data and from double shock data are statistically iden-

tical, providing confidence that the systematics for both measurements have been accounted

for correctly.

Combining the single and double-shock data it is apparent that the softening of deu-

terium around 110 GPa is quite abrupt, suggestive of a ∼15% density discontinuity. It is

reasonable to question whether this abrupt softening, observed under both single and double

shock compression, is merely an artefact of the high-pressure behavior of quartz since quartz

is used in both the single-shock measurements (as a velocity gauge) and the double-shock

measurements (as a re-shock anvil). However, this cannot be the case since a pressure of

110 GPa in deuterium corresponds to different pressures in quartz depending on the exper-

imental arrangement: 7.5 Mbar (21.5 km/s) in the single-shock arrangement (Fig. 2a), and

4 Mbar (16.5 km/s) in the double-shock arrangement (see inset of Fig. 9). Furthermore, no

corresponding anomalies were observed in quartz Hugoniot measurements taken on different

experimental platforms (see Ref.53 and references therein).

B. Shock wave reverberation times

Shock wave reverberation times were shown in the magnetic flyer plate experiments27,44

to be sensitive to the single-shock density. Since the laser-driven re-shock experiments of

Boehly et al.32 also generated multiple reverberations in the compressed deuterium (see

Fig. 2 of that reference), a similar type of analysis is attempted here. However, unlike the

single- and double-shock measurements described above which were performed essentially

at an instant, these reverberation data are necessarily time-integrated measurements and

therefore extremely sensitive to unsteadiness in the shock wave velocities. Given that shock

velocities in our experiments vary by a few percent during transit, hydrodynamic simulations

were required to provide corrections for shock unsteadiness. At the highest pressures accessed

in our experiments these corrections spanned more than half the difference between stiff and

soft behavior. Nevertheless, we report our best attempt to quantitatively analyze this type of

measurement since it was integral to the case built by Knudson et al.44 for the compressibility

of deuterium below 75 GPa.

The experimental set-up was the same as that for the re-shock measurements and is shown
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in the inset to Fig. 9. Details of the shock wave reverberations between the aluminum pusher

and the quartz anvil are shown in the space-time diagram in Fig. 11. Although there are

several reverberation events, only three of these are directly observable: t1 is the time that

the shock is initially transmitted into the D2 sample from the Al pusher; t2 is the time

that the shock impacts the quartz anvil; and t5 is the time that the reverberation overtakes

the initial shock in the quartz anvil. The last event occurs after the shock wave has made

three transits through the D2 sample. We define RO = (t2 − t1)/(t5 − t2) to be the overtake

ratio, analogous to the overtake ratio defined by Knudson et al..44 The difference between

this technique and the one used by Knudson et al., is that our earliest observation of the

reverberation is at the catch-up time t5, while Knudson et al. monitored the reverberation

signature at the deuterium-anvil interface, or event t4 as represented in Fig. 11. This is

because, at the pressures reported in Boehly et al.,32 the shocked quartz becomes optically

reflecting,52 blocking the deuterium-quartz interface from view.

The relationship between the inferred single-shock compression and the observed RO is

very sensitive to the steadiness of the wave and the flow conditions well behind the shock

front and requires hydrodynamic simulations for proper interpretation. To avoid introducing

additional uncertainty from the inherent errors in any single hydrodynamic simulation an

ensemble of simulations was performed to derive a scaling relation between change in shock

velocity, δUsD, and the resulting change in overtake ratio, δRO, for a monotonically decaying

(or accelerating) shock velocity. As described in Appendix B, decaying shock waves tend

to give artificially low values of RO (making the data appear excessively stiff) and therefore

must be corrected upward.

Fig. 12 shows the corrected RO as a function of UsD. The calculated error bars are

dominated by the ∼40 ps random measurement error in determining each of the times

t1, t2, and t5 from each data record. A major problem with this type of measurement is

that systematic errors are difficult to quantify and almost impossible to propagate in the

analysis; the errors shown are thus most likely an underestimate of the true uncertainty in

the measurement. In particular, the shock steadiness correction assumes a monotonically

decaying shock wave profile. While the subset of re-shock data we used in this reverberation

analysis appeared to exhibit this type of general behavior, the wave profile behind the

shock front is impossible to know and can have a significant impact on the reverberation

time. In addition, several EOS uncertainties such as the EOS of Al under a compression-
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release-recompression cycle and quartz under double compression are not known. Despite

these caveats, the curves displayed in Fig. 12 are generally consistent with the impedance

match analysis and the double shock results: i.e. a shock compression that lies intermediate

between the stiff and soft models.

VII. DISCUSSION AND CONCLUSIONS

A new set of laser-driven shock experiments indicate that the deuterium Hugoniot is stiff

(η ' 4.2) between 50 and 100 GPa, becoming softer (η ' 5.0) above 110 GPa. Very similar

behavior was also observed previously in laser-driven double-shock measurements.32 The

consistency between these two types of measurement, each with distinctly different system-

atics, provides good confidence in the results. These data are in agreement with those from

magnetically-driven flyers27 and convergent explosives,28,29 although those previous results

were restricted to pressures below 110 GPa, where we find the Hugoniot to be stiff. Around

105 GPa, a trend towards a softer Hugoniot is suggested perhaps by a single convergent

explosive point;29 however, this will need to be confirmed in magnetic-flyer and explosive

experiments above 110 GPa.

These new laser-shock data, taken using impedance matching techniques, disagree with

the 5.5 to 6-fold compressions observed in the first laser-shock experiments23,24 which had

implemented a radiography technique. It thus appears that the differences between the early

laser-shock measurements and subsequent deuterium Hugoniot measurements performed on

other platforms are not due to the different time scales of each shock experiment and are

likely a result of limitations in the radiography measurement technique. Other workers69

have suggested that shock tilt, steadiness, and pre-heat effects caused systematic errors in

the Nova experiments; however, those issues were identified and addressed in the initial

experiments, as well as in subsequent re-analysis, and cannot quantitatively explain the

results. Ultimately the radiography measurements need to be carefully repeated to identify

where the discrepancy arises.

Considerable attention has been given in this experiment to establishing the pedigree of

the aluminum impedance matching model and to propagating uncertainties in the aluminum

Hugoniot and release curves. We have developed an impedance match technique with min-

imal model dependence56 based on the best fit to absolute Al Hugoniot data and applied it
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both to our data as well as to previous results, propagating errors throughout. This best-fit

Al model approach does not significantly affect previously published results below 100 GPa

but is very important for analyzing data much above 100 GPa. In addition to standardizing

the aluminum impedance matching analysis, we have corrected for the effects of different

initial densities used in the various experiments. This is particularly important when trying

to compare the convergent explosive measurements performed on non-liquid samples.

Above 110 GPa, the resulting Hugoniot we observe is in agreement with Direct PIMC21,22

calculations which show 5-fold compression, but are in disagreement with Restricted PIMC

calculations by Militzer and Ceperley20 and the DFT results of Desjarlais17 both of which

predict that deuterium remains below 4.2-fold compressed at these pressures. DFT predic-

tions by other workers do not extend above 100 GPa.

The ∼15% increase in compression around 110 GPa may be suggestive of a phase

transition in the fluid, the existence of which has been predicted in some first principles

calculations.19,70–72 Recent experiments on deuterium under quasi-isentropic compression

observed a 20% density discontinuity around 1.4 g/cm3 and 130 GPa, appearing to con-

firm the existence of a first order transition at low temperatures.73 Scandolo et al.71 have

suggested that at higher temperatures the critical point of a liquid-liquid phase boundary

could cause increased compressibility74 along the nearby Hugoniot. These scenarios would

need to be consistent with both single and double-shock measurements. Better evidence for

a phase transition or critical point will likely come from measurements of thermodynamic

derivatives such as the sound speed or specific heat capacity.52
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APPENDIX A: INFERRING SINGLE-SHOCK COMPRESSION FROM

DOUBLE-SHOCK MEASUREMENTS

We have developed a method to infer the single-shock compression from the velocities

measured in a deuterium double-shock experiment. This technique requires solving the

Hugoniot equations using input from EOS models to determine the second-shock compress-

ibility. Uncertainties in the second-shock compressibility, based on an average of stiff and

soft models, are propagated in the analysis.

Before describing this technique, it is important to understand the observables measured

in the reflected shock experiment.32 Here an incident shock at velocity UsD in deuterium

traverses a reservoir of liquid D2 and impacts a quartz anvil, launching a reflected shock

(re-shock) in deuterium and a transmitted shock at velocity UsQ in the quartz anvil (see

inset to Fig. 9). Since both deuterium and quartz are transparent, UsD is measured im-

mediately before impact while UsQ is measured immediately after impact, as required for

impedance match calculations at an interface. Because the doubly shocked deuterium and

singly shocked quartz equilibrate to a common pressure at the interface and because the

quartz Hugoniot is known to high accuracy, by measuring UsQ we know the re-shock pres-

sure in deuterium to high accuracy. Fig. 9 shows the (model-independent) experimental

observables for the re-shock experiment together with re-shock observables calculated using

the Ross and Sesame72 models. Without any further analysis, the similarity between the

single shock IM data in Figs. 7 and 8 and the laser re-shock data is apparent by the way the

data lie nearer the stiff Sesame72 predictions at lower pressures, and approximately midway

between the Ross and Sesame72 models at higher pressures.

The method by which the first shock density can be deduced from the re-shock observ-

ables becomes apparent from examining the set of Hugoniot equations for single and double

shocks. Using a single, model-dependent dimensionless parameter for the second shock

(in)compressibility results in 5 equations and 5 unknowns, fully determining the system of

equations. The Hugoniot equations for a single shock in deuterium are given by:

ρD1(UsD1 − UpD1) = ρD0UsD1 (A1)

PD1 = ρD0UsD1UpD1 (A2)

where ρD1, PD1, UsD1, and UpD1 are the deuterium density, pressure, shock speed, and particle
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speed of the incident shock and ρD0 is the initial density. The initial pressure is small and

thus neglected as usual. For the deuterium re-shock state:

ρD2(UsD2 − UpD2) = ρD1(UsD2 − UpD1) (A3)

PD2 − PD1 = ρD1(UsD2 − UpD1)(UpD2 − UpD1) (A4)

where ρD2, PD2, UsD2, and UpD2 are the density, pressure, shock speed, and particle speed in

the re-shock state. Since the quartz Hugoniot has been determined,75 measurement of UsQ

gives PD2 = PQ and UpD2 = UpQ in quartz.

With the 4 equations A1, A2, A3, and A4 we have 5 unknowns (ρD1, PD1, UpD1, UsD2,

and ρD2), along with the 3 known parameters (UsD1, PD2, and UpD2). The final required

equation is derived by combining two equations. The first of these is the Rankine-Hugoniot

equation expressing the change in internal energy between primary and secondary shocked

states, ∆E21:

∆E21 =
1

2
(PD2 + PD1)

(
1

ρD1

− 1

ρD2

)
(A5)

The second equation relates the energy difference ∆E21 to PD1, PD2, ρD1 and ρD2 via the

material EOS, as given by the constituent relation E = E(ρ, P ). In general this is an integral

expression involving two independent thermodynamic derivatives, typically the Gruneisen

parameter, Γ = V (∂P/∂E)V , and the adiabatic exponent, γ = −(∂lnP/∂lnV )s. Since these

non-dimensional parameters are slowing varying the expression can be simplified to:

∆E21 = (PD2/ρD2 − PD1/ρD1)/(γ̃ − 1) (A6)

where γ̃ is an effective adiabatic exponent which quantifies the second shock compressibility.

In the case where the second shock Hugoniot is on an isentrope and γ is constant, γ̃ can be

replaced by γ and the equation is exact. If the second shock Hugoniot is not on an isentrope

this equation is still exact if Γ = γ − 1. Given that a second shock in deuterium is actually

rather close to both these cases it is quite reasonable to assume the form given in Eq. A6.

Ultimately though, γ̃ will be defined by Eq. A6 and computed using models; how close γ̃ is

to a physical γ is instructive but does not affect the accuracy of the analysis.

Eliminating ∆E21 from Eqs. A5 and A6 gives:

ρD2

ρD

= 1 +
PD2 − PD1

PD1 + (γ̃ − 1)(PD2 + PD1)/2
(A7)
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It is then an algebraic exercise to solve Eqs. A1, A2, A3, A4, and A7 for any one of the

single-shock parameters PD1, ρD1, or UpD1. In particular, PD1 is given by the real root of

the implicit cubic equation:

(PD2 − PD1)
2

[
1− PD1

ρD0U2
sD1

]
=

ρD0

(
PD1 + (γ̃ − 1) (PD2+PD1)

2

) [
UpD2 − PD1

ρD0UsD1

]2
(A8)

Having determined PD1, the density ρD1 can be determined explicitly from Eqs. A1 and A2.

Before proceeding with this calculation the effective adiabatic exponent, γ̃, and its un-

certainty must be determined. This was done by examining predictions from several EOS

models: Sesame72,8 the 2003 Kerley model34 and the Ross model.10 By computing pairs of

incident (PD1, ED1, ρD1) and reflected (PD2, ED2, ρD2) shock states for a series of incident

shocks in D2 impacting the quartz anvil γ̃ was calculated directly from Eq. A6. The results

are plotted as a function of UsD1 (an experimental observable) and shown in Fig. 13. The

fact that γ̃ is very similar for all of these models, whether they are stiff or soft, indicates that

uncertainties in the second shock compressibility are quite small, at least to the extent that

differences between these models are good predictors of uncertainties. The circular symbols

shown in Fig. 13 represent the average γ̃(UsD1) from the three models; the error bars show

the standard deviation of the average. This model-averaged γ̃(UsD1) can then be used in

Eq. A8 as an estimate of the correct value of γ̃ needed to invert the reflected shock states.

Both random and systematic uncertainties are propagated through the analysis in order

to produce error estimates for the inverted single shock parameters. Two systematic uncer-

tainties contribute to the inversion process: one is the uncertainty in γ̃(UsD1), which can be

represented by σγ (error bars in Fig. 13), and the second is the uncertainty in the quartz

Hugoniot (which translates to uncertainties in PD2 and UpD2). Figure 14(a) shows the mag-

nitude of the systematic contribution to the relative density (or compression) uncertainty;

evidently equation A8 with the model-averaged γ̃(UsD1) can be used to invert the incident

shock states using the reflected shock data with systematic uncertainty < 4% in density for

all three models (stiff or soft) at incident shock Hugoniot pressures > 100 GPa.

To test the accuracy of this inversion technique we use the model-averaged γ̃(UsD1) de-

scribed above to invert the observables UsD1 and UsQ predicted by each model; the resulting

PD1 and ρD1 are then compared to the actual single-shock values for that model. This

also provides a check of the estimated uncertainties in the analysis. The results from this
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inversion test, as applied to each model, are plotted as the small open symbols shown in

Fig. 14(b) and are seen to compare well with the actual single shock Hugoniot values (solid

curves in Fig. 13). The error bars in Fig. 14(b) represent the magnitude of the estimated

systematic uncertainty propagated through the inversion procedure; it is apparent that the

true single shock Hugoniot is captured within the estimated uncertainty band in nearly all

cases. This shows that the inversion procedure produces accurate estimates for the single

shock density for models spanning the full range of likely deuterium compressibilities.

APPENDIX B: UNSTEADINESS CORRECTIONS TO MULTI-SHOCK REVER-

BERATION TIMES

The technique of using shock reverberation times as a measure of the first shock compres-

sion is particularly susceptible to shock unsteadiness effects. Since the shock velocities in our

experiments typically decay slightly with time it is important to understand the relationship

of the overtake ratio, RO, to such velocity variations and to establish a means of correcting

for them. Here we derive the correction relation for monotonically varying shock velocities.

Several dozen hydrodynamic simulations of the reverberating wave were performed for

varying degrees of shock unsteadiness. Non-steady conditions were created by applying

ramped pressure pulses to the target (both positive and negative ramps). Two examples,

one for a steady shock the other for a decaying shock, are shown in Fig. 15(a) and 15(b).

For each simulation we obtained the shock velocities at break out (UsBO) and impact (UsIM)

and computed RO from the various event times: RO = (t2 − t1)/(t5 − t2). The measure

of unsteadiness is given by δUs/Us = (UsIM − UsBO)/〈Us〉, where 〈Us〉 is the average shock

velocity in the deuterium.

Fig. 15(c) shows how the measured RO can vary for different degrees of unsteadiness

for simulations with two models: the Sesame72 EOS (solid symbols) and Ross EOS (open

symbols). These unsteady overtake ratios, ROU , given by the various points, can lie far off

the expected RO for a steady shock, as given by the lines. In particular, attenuating shocks

tend to produce a ROU that is smaller than the steady shock RO, making the deuterium

EOS appear artificially stiff.

For each non-steady case we can define the deviation from the ideal case, δRO = ROU−RO

(here RO corresponds to the ideal case). Figure 15(d) shows these same simulation data
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plotted as δRO/RO versus δUs/Us; this representation reveals a simple empirical relationship,

δRO/RO = 2.72δUs/Us, which appears to be valid over a wide range of shock strengths and

is independent of the stiffness of the EOS model (Sesame72 or Ross).

Experimentally observed overtake ratios, ROM , can thus be adjusted to a corrected over-

take ratio, ROC , using the expression:

ROC = ROM(1 + δRO/RO)−1

= ROM(1 + 2.72δUs/Us)
−1

Aside from the correction coefficient, all the terms on the right hand side of this equation are

observables which can be extracted directly from the data. Note that for slightly decaying

shocks δUs/Us < 0, so that ROC > ROM . For most of our data the magnitude of δUs/Us

was less than 0.05.
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TABLE II: Single-shock properties as inferred from the inversion of double-shock data reported

in Boehly et al.32 using the technique described in Appendix A and the model-averaged γ̃ shown

in Fig. 13. UsD1 and UsQ are the measured shock speeds in D2 and quartz; UpD1, PD1, ρD1, and

ηD are the inferred single-shock particle speed, pressure, density, and compression in deuterium.

For quantities with a systematic error component the random and systematic errors are listed

separately in parentheses: (ran, sys).

Expt. UsD1 UsQ UpD1 PD1 ρD1 ηD

km/s km/s GPa mg cm−3

27869 37.12±0.34 20.15±0.25 29.09±(0.29, 0.13) 187.5±(2.9, 0.8) 803±(32, 13) 4.63±(0.19, 0.07)

27879 29.35±0.32 17.10±0.30 23.43±(0.32, 0.13) 119.4±(2.4, 0.7) 860±(50, 19) 4.95±(0.29, 0.11)

27934 32.92±0.35 18.68±0.25 26.23±(0.28, 0.13) 149.9±(2.7, 0.7) 855±(39, 16) 4.92±(0.23, 0.09)

27940 31.83±0.41 17.73±0.25 24.88±(0.30, 0.14) 137.5±(2.9, 0.8) 795±(39, 16) 4.58±(0.22, 0.09)

29012 16.68±0.47 9.21±0.63 11.20±(0.96, 0.41) 32.4±(2.9, 1.2) 528±(100, 37) 3.04±(0.58, 0.21)

29021 24.88±0.32 14.26±0.26 19.00±(0.31, 0.18) 82.0±(1.9, 0.8) 734±(42, 22) 4.23±(0.24, 0.13)

29398 44.01±0.56 22.97±0.26 34.16±(0.33, 0.15) 261.0±(5.0, 1.1) 776±(33, 11) 4.47±(0.19, 0.07)

29401 41.40±0.33 21.89±0.25 32.24±(0.29, 0.14) 231.7±(3.2, 1.0) 784±(28, 12) 4.52±(0.16, 0.07)

29412 23.27±0.33 13.61±0.26 17.82±(0.30, 0.19) 72.0±(1.8, 0.8) 742±(46, 25) 4.27±(0.27, 0.15)

30122 28.36±0.30 16.53±0.28 22.51±(0.30, 0.14) 110.8±(2.2, 0.7) 842±(47, 20) 4.85±(0.27, 0.11)

30129 33.26±0.56 19.26±0.42 26.93±(0.45, 0.12) 155.5±(4.4, 0.7) 912±(70, 17) 5.26±(0.41, 0.10)

30134 31.33±0.33 17.77±0.23 24.77±(0.26, 0.13) 134.7±(2.4, 0.7) 829±(37, 17) 4.78±(0.21, 0.10)

30663 32.03±0.34 18.04±0.23 25.28±(0.26, 0.13) 140.5±(2.5, 0.7) 823±(36, 16) 4.74±(0.21, 0.09)

31359 31.03±0.34 17.65±0.25 24.55±(0.28, 0.13) 132.2±(2.4, 0.7) 831±(40, 17) 4.79±(0.23, 0.10)

31361 26.45±0.32 15.14±0.26 20.43±(0.30, 0.17) 93.8±(2.0, 0.8) 763±(42, 21) 4.39±(0.24, 0.12)

31363 23.58±0.34 13.92±0.26 18.25±(0.30, 0.18) 74.7±(1.9, 0.7) 769±(48, 26) 4.43±(0.28, 0.15)
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FIG. 1: An assortment of calculated single shock principal Hugoniots for D2 starting from the

initial density of 0.171 g/cm3. The different theoretical approaches are distinguished by color: (a)

Free energy models from Saumon and Chabrier developed for astrophysical calculations9 (dot-dash

black), an early table from the Sesame database by Kerley (Sesame72)8 (solid black), an updated

EOS from Kerley34 (long-dash black), a linear mixing model from Ross10 (dashed black), and

the original solid-to-plasma interpolation model (qEOS) by More66 (dotted black); (b) Restricted

PIMC simulations by Magro19 (dotted green) and Militzer20 (solid green), and Direct PIMC by

Bezkrovniy21 (dashed green) (c) Reaction Ensemble Monte Carlo technique21 (solid pink); (d) QMD

calculations by Collins16 (solid red), Desjarlais17 (dotted red), and Bonev18 (dashed red); (e) Tight

binding calculations by Lenosky13 (solid orange); (f) Activity expansion (ACTEX) predictions by

Rogers11 (solid blue).
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FIG. 2: (a) Sketch of the target used for single shock measurements. (b) A line VISAR data record

showing simultaneous shocks in D2 and quartz. (c) Sample shock velocity history in deuterium and

quartz with dotted lines representing measurement errors. The shock velocity in aluminum immedi-

ately before break-out is then determined from the measured shock velocity in quartz immediately

after break-out using the previously-determined experimental fit shown in (d).53
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FIG. 3: Systematic uncertainties in the deuterium particle velocity arising from uncertainties

in the Aluminum Hugoniot and release, shown as a function of deuterium shock pressure. (a)

Magnitude of the total systematic uncertainty (solid curves) computed from the quadrature sum of

contributions from the uncertainty in the Hugoniot (dashed curves) and uncertainty in the release

(dotted curves). The total systematic uncertainty depends only slightly on the D2 EOS: Errors

shown were calculated using either the Sesame72 EOS table (red) or the Ross linear mixing EOS

(blue). (b) A similar plot showing the relative magnitude of the systematic uncertainties.
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FIG. 4: Sample impedance match diagram illustrating error propagation for a 537 GPa shock

transmitted from Al into D2. Black dash-dot curves show the Rayleigh lines. (a) Systematic

uncertainties. Dashed curves show the systematic 1σ variations of the principal Hugoniot of Al

relative to the best fit. Blue dash-dot curves show the addition of 1σ variations from the release

profile, as estimated from the variations among an ensemble of five theoretical models as previ-

ously discussed.56 (Insets) The open circles mark the range of systematic uncertainty in the Al

Hugoniot state, the open triangles mark the range of systematic uncertainty associated with the

off-Hugoniot (release profile) uncertainty. (b) Random uncertainties. Black dotted curves show

the range of uncertainty in the Rayleigh lines associated with the measurement uncertainties. Blue

dashed curves show the propagation of uncertainty in the Al shock velocity, which is the dominant

uncertainty. Scales in the insets are different, for comparison the open circles and open triangles

from (a) are re-plotted in the insets in (b).
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FIG. 5: Comparison of Sesame728 (a,b,c) and Ross10 (d,e,f) deuterium Hugoniot predictions for a

suite of initial densities: 0.1, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22 g/cm3, shown alternately as solid and

dashed curves; colors range from violet (less dense) to red (more dense). (a) and (d) show pressure

versus compression and illustrate how lower initial densities produce higher peak compressions; (b)

and (e) show Us versus Up and illustrate how the different initial densities produce slightly offset

yet parallel Hugoniots; (c) and (f) show how, by adding an offset correction (∆C0)to Us causes

these parallel Hugoniots to collapse onto a common curve. This correction is the same for both stiff

(Sesame72) and soft (Ross) models and provides a way to directly compare experiments performed

at different initial densities.
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FIG. 6: Raw data for D2 impedance match experiments with Al is the standard. Data are

from Knudson27 (open red triangles), Belov28 and Boriskov29 (inverted black solid triangles),

Grishechkin30 (open green squares, with two points overlapped on this plot) and this work (open

blue circles). The solid (dashed) curve is a prediction from the Ross (Sesame72) model when

impedance-matched to our best fit Al impedance match model. This plot provides the closest

comparison of raw experimental observables among all the impedance match experiments.
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FIG. 7: Us versus Up data for the deuterium principal Hugoniot. Impedance match results from

Knudson et al.26,27 (red triangles), Belov et al.28 and Boriskov et al.29 (inverted black solid trian-

gles), Boriskov et al.31 (inverted black open triangles), Grishechkin et al.30 (open green squares)

and this work (solid blue circles). Absolute Hugoniot measurements are from Da Silva et al.23

and Collins et al.24,25 (grey diamonds). Solid (dashed) curve shows the Hugoniot predicted by the

Ross10 (Sesame728) model. Error bars for the impedance match data represent the quadrature

sum of the random and systematic errors in the impedance match analysis.
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FIG. 8: Pressure versus compression for single-shock measurements of the deuterium Hugoniot.

Impedance match results from Knudson et al.26,27 (red triangles), Belov et al.28 & Boriskov et

al.29 (inverted black solid triangles), Boriskov et al.31 (inverted black open triangles), Grishechkin

et al.30 (open green squares) and this work (solid blue circles). Absolute Hugoniot measurements

are from Da Silva et al.23 and Collins et al.24,25 (grey diamonds). Solid (dashed) curve shows the

Hugoniot predicted by the Ross10 (Sesame728) model. For proper comparison, impedance match

data from all experiments have been (i) Analyzed using the same Al model (as described in this

paper), (ii) Normalized to the initial density of ρ00 = 0.174 g/cm3 used in this experiment.
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FIG. 9: Experimental observables for the double shock experiments of Boehly et al.32 together with

model calculations from Ross10 (green line), Sesame728 (red line), and Kerley0334 (blue line). The

data are consistent with stiff models below ∼100 GPa but lie in between stiff and soft models at

higher pressures. The width of the model EOS lines gives the uncertainty in the quartz Hugoniot.

Inset shows the target arrangement for the double-shock experiment.75
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FIG. 10: Single-shock Hugoniot inferred from double-shock data of Boehly et al.32 using the in-

version method described in Appendix A (solid pink circles). Also shown are the single shock

impedance match measurements of this study (open blue circles), Knudson et al.26,27 (red trian-

gles), Belov et al.28 & Boriskov et al.29 (inverted black solid triangles), Boriskov et al.31 (inverted

black open triangles), and Grishechkin et al.30 (open green squares). The agreement between the

laser-driven single and double shock results over all pressures indicates that the systematics for

each type of measurement, which differ significantly, have been estimated correctly. Both sets of

data exhibit an abrupt increase in compression around 110 GPa. Model curves are from Sesame72

(dashed red), Kerley03 (dotted blue) and Ross EOS (solid green).
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FIG. 11: Space-time diagram of deuterium shock reverberation occurring between an Al pusher

and quartz anvil. Only the leading shock front is observed in these experiments, never the interface

as was done in a previous study;44 this is because pressures are sufficiently high in both deuterium

and quartz that the shocks are reflecting to the VISAR diagnostic. Hence only events 1, 2, and 5

are recorded.
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FIG. 12: The overtake ratio, RO, plotted versus average deuterium shock speed. Model curves

are from Sesame72 (dashed red), Kerley03 (dotted blue), and Ross EOS (solid green). Unlike the

single- and double-shock measurements described in this study, these reverberation time data are

extremely sensitive to unsteady shock wave profiles. Approximate corrections for this have been

applied using the method described in Appendix B.
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FIG. 13: The effective adiabatic exponent, γ̃, as determined from Eq. A6, for various D2 EOS

models (Ross (solid green), Sesame72 (dashed red), Kerley03 (dotted blue)) versus single-shock

velocity in D2 (an experimental observable). At very high temperatures, or in the limit of a

degenerate electron gas, γ̃ should tend towards 5/3. Note that all models appear to give similar

values for γ̃, demonstrating that second shock compressibilities are very similar for stiff and soft

models. Single-shock densities are inferred from double-shock measurements by using the model

averaged γ̃ shown with open circles; errors in γ̃, given by the standard deviation between models,

are propagated in the inversion analysis.
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FIG. 14: (a) The estimated systematic uncertainty in the first shock densities which were derived

from the double shock inversion analysis; (b) Single-shock states inferred from model-calculated

double-shock states using the γ̃ of Fig. 13 (open triangles); error bars show the estimated systematic

uncertainty contribution. These are compared to the exact single shock compression curves from

Sesame72 (dashed red), Kerley03 (dotted blue) and Ross EOS (solid green) models. The agreement

between the single-shock states inferred by the model-averaged inversion analysis and the exact

single-shock states is apparent.
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FIG. 15: Deviations of shock wave overtake ratios for different degrees of shock unsteadiness as

determined by hydrodynamic simulations. Sample shock velocity history in deuterium and quartz

for (a) a steady shock, (b) a decaying shock. (c) The expected overtake ratios, RO, for steady

shocks are shown for 3 different models: Sesame72 (dashed red), Kerley03 (dotted blue), and Ross

(solid green). Hydrodynamic simulations using Sesame72 (solid points) and Ross (open points)

illustrate how the measured RO can drift significantly from the ideal (steady) shock case given by

the lines. (d) Scaling of the overtake ratio with the degree of unsteadiness follows an approximately

linear relation, independent of EOS model. This linear relation can be used to correct the measured

overtake ratio if the shock velocity is monotonically changing by up to 6-7% percent over the first

shock transit time.
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